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Overview CRFL Testing: Parameter Smoothing
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Return the majority vote winner: the u(M(D")
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© Defenses do exist: Robust aggregations and empirically robust FL training protocols. Method: server makes the prediction based on parameter-smoothed models.

(D They lack robustness certification and are adaptively attacked again. Key idea: for two close distribution u(M(D")) and u(M(D)) , we verify that returned
label from the smoothed classifier is consistent.

Certifiably Robust Federated Learning (CRFL): “* Use f-divergence as a statistical distance for model closeness.

v' The first general framework: train certifiably robust FL models against backdoors.

v' Theoretical analysis: a sample-wise robustness certification on backdoors under certain
constraints.

v' Empirical study: show robustness certification under FL parameters.

Certification Goal

Goal: develop a robustness certificate by studying under what condition for backdoor
perturbation that the prediction for a test sample is consistent between the smoothed FL
models trained from D and D’ separately.

CRFL Training: Clipping and Perturbing
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Perturbing 1. Quantify the model closeness between the FL trained models via f-divergence and
Mode! Markov Kernel.
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¢ Use clipping and noise perturbing to
control the global model deviation.

R f 2. Connect the model closeness to the prediction consistency by parameter smoothing.
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Robustness Conditions

General Robustness Condition:
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Robustness Condition in Feature Level:
* When the backdoor magnitude is the same for every attacker:
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Experiments

Setup:
* Multi-class logistic regression on three datasets: Lending Club Loan Data (LOAN),
MNIST, and EMNIST.

Evaluation Metric:
 Certified accuracy at r: the fraction of the test set for which the possibly

backdoored classifier makes correct and consistent predictions with the clean

model. 1 m Given a test set of size m, for i-th test
m, Z':l II.{C,,; = Yi and RADz = 7“} sample, the ground truth label is y;, and
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 Effect of different smoothing levels during training:
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** When noise level o is high, large radius can be certified but at a low accuracy, so
the parameter noise controls the trade-off between certified robustness and
accuracy.

More details and results are in our paper:
 Effects of smoothing level, attacker ability, robust aggregation, client number,
training rounds, etc. on certified robustness.




