

# IBM Research ETHzürich

## **Improving Vertical Federated Learning** by Efficient Communication with ADMM

Chulin Xie<sup>1</sup> Pin-Yu Chen<sup>2</sup> Ce Zhang<sup>3</sup> Bo Li<sup>1</sup>

<sup>1</sup>UIUC, <sup>2</sup>IBM Research, <sup>3</sup>ETH Zurich



### Introduction

### **Vertical Federated Learning (VFL)**:

• Features of the samples are partitioned across clients and the labels are owned by server



## VIMADMM Workflow

• Key steps of VIMADMM at each round *t*:

(1) Communication from client to server: a batch of local embeddings  $\{h_j^{k(t)}\}_{j \in B(t)}$ 

(2) Sever updates auxiliary variables:

$$z_{j}^{(t)} = \underset{z_{j}}{\operatorname{argmin}} \quad \ell(z_{j}, y_{j}) - \lambda_{j}^{(t-1)^{\top}} z_{j} + \frac{\rho}{2} \left\| \sum_{k=1}^{M} h_{j}^{k(t)} W_{k}^{(t)} - z_{j} \right\|_{F}^{2}, \forall j \in B(t)$$
(3) Sever updates dual variables:

$$\lambda_{j}^{(t)} = \lambda_{j}^{(t-1)} + \rho\left(\sum_{k=1}^{M} h_{j}^{k(t)} W_{k}^{(t)} - z_{j}^{(t)}\right), \forall j \in B(t)$$

(4) Sever updates linear heads:  $W_{k}^{(t+1)} = \underset{W_{i}}{\operatorname{argmin}} \quad \beta \mathcal{R}(W_{k}) + \sum_{j \in B(t)} \lambda_{j}^{(t)^{\top}} h_{j}^{k(t)} W_{k} + \sum_{j \in B(t)} \frac{\rho}{2} \left\| \sum_{i \in [M], i \neq k} h_{j}^{i(t)} W_{i}^{(t)} + h_{j}^{k(t)} W_{k} - z_{j}^{(t)} \right\|_{F}^{2}, \forall k \in [M]$ 

(5) Communication from server to each client: residual variable, dual variables, and one *corresponding* linear head

 ${s_{j}^{k}}^{(t+1)} \triangleq {z_{j}}^{(t)} - \sum_{j=1}^{k} {h_{j}^{i}}^{(t)} W_{i}^{(t+1)}, \forall j \in B(t), \forall k \in [M]$ 

(6) Client updates local model parameters:  $\theta_{k}^{(t+1)} = \underset{\rho}{\operatorname{argmin}} \quad \beta \mathcal{R}(\theta_{k}) + \sum_{j \in B(t)} \lambda_{j}^{(t+1)^{\top}} f(x_{j}^{k};\theta_{k}) W_{k}^{(t+1)} + \frac{\rho}{2} \sum_{j \in B(t)} \left\| s_{j}^{k(t+1)} - f(x_{j}^{k};\theta_{k}) W_{k}^{(t+1)} \right\|_{F}^{2}$ Solved by **multiple** local SGD steps. Reduce **frequency** by

- Aggregation: averaging local embeddings fails to capture the unique properties of each client.
- **Communication**: communicating gradients for *each* training step incurs high costs.

#### **Our contributions:**

- ✓ **Framework**: an effective framework with multiple heads (VIM).
- ✓ Algorithm: an ADMM-based method (VIMADMM) reducing communication costs by allowing multiple local updates at each step. ✓ Empirical study: 1) VIMADMM converges faster and achieves higher
- accuracy; 2) client-level explanation under VIM based on the linear heads.

### VFL with Multiple Heads (VIM)

- VFL setting (with model splitting setting)
- The features of one sample  $\{x_j^1, x_j^2, \dots, x_j^M\}$  is distributed to M clients
- Each client has a local feature set  $X_k = \{x_j^k\}_{j=1}^N$  and uploads local embeddings  $f(x_j^k; \theta_k)$
- Server aggregates local embeddings and computes gradient with labels  $\{y_j\}_{j=1}^N$
- Challenges: using averaged local embeddings as server model input [1] might lose the unique aspects of each local feature set.
- **Our idea**: server learns a model with multiple linear heads  $W_1, W_2, \ldots, W_M$ corresponding to local clients, taking their separate contribution into account  $\min_{\{W_k\}_{k=1}^M, \{\theta_k\}_{k=1}^M} \sum_{j=1}^N \ell(\sum_{k=1}^M f(x_j^k; \theta_k) W_k, y_j) + \sum_{k=1}^M \beta_k \mathcal{R}_k(\theta_k) + \sum_{k=1}^M \beta_k \mathcal{R}_k(W_k)$

Local embedding Server heads Regularization

- Comparing to SGD-based VFL methods [1,2] where server sends gradients to clients at every training step of the local models, VIMADMM has lower communication costs.
- allowing multiple local updating steps at each round;
- Reduce dimensionality of information by **exchanging ADMM-related variables.**

### Experiments

#### VIMADMM vs SOTA [1,2]

• VFL classification on four datasets: MNIST, CIFAR, NUS-WIDE and



\* Faster convergence; improved communication efficiency; higher accuracy.

#### **Client-level Explainability of VIM**

• The weights norm of linear heads under clean setting (row 2), under one noisy client (row 4), and test accuracy when each client's test input features are perturbed (row 3).









### Solving VIM with ADMM-based method

- Key idea: Multiple heads in VIM enable the alternating direction method of multipliers (ADMM) via a special decomposition into simpler sub-problems that can be solved in a distributed manner.
- **Formulation:** an equivalent **constrained** optimization problem ▲ auxiliary variables

$$\sum_{j=1}^{N} \ell(z_j, y_j) + \sum_{k=1}^{M} \beta_k \mathcal{R}_k(\theta_k) + \sum_{k=1}^{M} \beta_k \mathcal{R}_k(W_k)$$
  
s.t. 
$$\sum_{k=1}^{M} f(x_j^k; \theta_k) W_k - z_j = 0, \forall j \in [N]$$

a **consensus** between the server's output and auxiliary variable • Augmented Lagrangian:

 $z_{j}^{(t+1)} = \operatorname{argmin}_{\mathcal{L}}(\{ heta_{k}^{(t+1)}\}, \{W_{k}^{(t+1)}\}, z_{j}, \{\lambda_{j'}^{(t)}\}), orall j \in [N],$ 

 $\lambda_{j}^{(t+1)} = \operatorname*{argmin}_{\lambda_{j}} \mathcal{L}(\{ heta_{k}^{(t+1)}\}, \{W_{k}^{(t+1)}\}, \{z_{j'}^{(t+1)}\}, \lambda_{j}), \forall j \in [N],$ 

 $\theta_{k}^{(t+1)} = \underset{k}{\operatorname{argmin}} \mathcal{L}(\theta_{k}, \{W_{k'}^{(t+1)}\}, \{z_{j}^{(t)}\}, \{\lambda_{j}^{(t)}\}), \forall k \in [M], \mathsf{lent}$ 

 $W_k^{(t+1)} = \operatorname{argmin} \mathcal{L}(\{ heta_{k'}^{(t)}\}, W_k, \{z_j^{(t)}\}, \{\lambda_j^{(t)}\}), orall k \in [M],$ 

 $+\sum_{j=1}^N\ell(z_j,y_j) + \sum_{k=1}^Meta_k\left(\mathcal{R}_k( heta_k) + \mathcal{R}_k(W_k)
ight) + \sum_{j=1}^N\lambda_j^ op\left(\sum_{k=1}^Mf(x_j^k; heta_k)W_k - z_j
ight)$ • Solution: dual variables constant **penalty** factor

- Decomposes the problem into four sets of sub-problems over  $\{W_k\}, \{\theta_k\}, \{z_j\}, \{\lambda_j\}$
- Alternatively updating in server and clients
- Each sub-problem set can be solved in parallel across M clients or N samples.

The weights of linear heads reflect the importance of local clients; Perturbing the client with high weights has higher impact on test accuracy; VIM enables client denoising by lowering their weights.

#### More details and results are in our paper:

- Details for algorithm VIMADMM-J for VFL without model splitting setting.
- Results on communication costs comparison, effect of penalty factor and local steps, client summarization and the visualization of the local embedding.

#### **References**:

server

[1] Tianyi Chen, Xiao Jin, Yuejiao Sun, and Wotao Yin. Vafl: a method of vertical asynchronous federated learning. arXiv, 2020.

[2] Yaochen Hu, Di Niu, Jianming Yang, and Shengping Zhou. Fdml: A collaborative machine learning framework for distributed features. KDD, 2019.