
Chulin Xie1 Pin-Yu Chen2 Ce Zhang3 Bo Li1

1UIUC, 2IBM Research, 3ETH Zurich

Improving Vertical Federated Learning
by Efficient Communication with ADMM

VFL with Multiple Heads (VIM)
• VFL setting (with model splitting setting)

• Challenges: using averaged local embeddings as server model input [1]
might lose the unique aspects of each local feature set.

• Our idea: server learns a model with multiple linear heads
corresponding to local clients, taking their separate contribution into account

• The features of one sample is distributed to M clients
• Each client has a local feature set and uploads local

embeddings
• Server aggregates local embeddings and computes gradient with labels

Experiments

More details and results are in our paper:
• Details for algorithm VIMADMM-J for VFL without model splitting setting.
• Results on communication costs comparison, effect of penalty factor and local steps, client

summarization and the visualization of the local embedding.

References:
[1] Tianyi Chen, Xiao Jin, Yuejiao Sun, and Wotao Yin. Vafl: a method of vertical asynchronous federated learning.
arXiv, 2020.
[2] Yaochen Hu, Di Niu, Jianming Yang, and Shengping Zhou. Fdml: A collaborative machine learning framework
for distributed features. KDD, 2019.

VIMADMM vs SOTA [1,2]
• VFL classification on four datasets: MNIST, CIFAR, NUS-WIDE and

ModelNet40.

Client-level Explainability of VIM
• The weights norm of linear heads under clean setting (row 2), under one noisy client (row

4), and test accuracy when each client’s test input features are perturbed (row 3).

v Faster convergence; improved communication efficiency; higher accuracy.

v The weights of linear heads reflect the importance of local clients;
v Perturbing the client with high weights has higher impact on test accuracy;
v VIM enables client denoising by lowering their weights.

VIMADMM Workflow

• Comparing to SGD-based VFL
methods [1,2] where server sends
gradients to clients at every training
step of the local models, VIMADMM
has lower communication costs.

v Reduce frequency by
allowing multiple local
updating steps at each round;

v Reduce dimensionality of
information by exchanging
ADMM-related variables.

Solved by multiple local SGD steps.

Solving VIM with ADMM-based method
• Key idea: Multiple heads in VIM enable the alternating direction

method of multipliers (ADMM) via a special decomposition into simpler
sub-problems that can be solved in a distributed manner.

• Formulation: an equivalent constrained optimization problem

• Solution:

Vertical Federated Learning (VFL):
• Features of the samples are partitioned across clients and the labels are

owned by server

Introduction

Challenges:
• Aggregation: averaging local embeddings fails to capture the unique

properties of each client.
• Communication: communicating gradients for each training step incurs

high costs.

VFL with model splitting

Clients

Server

Feature Set 1

…

…

Feature Set k Feature Set M

…

…

A batch of
local embeddings

Local feature
extractor

Server model Gradient w.r.t
local embeddings

A batch of
local logits

Local
model

/ Gradient w.r.t
local logits

VFL without model splitting

Our contributions:
üFramework: an effective framework with multiple heads (VIM).
üAlgorithm: an ADMM-based method (VIMADMM) reducing

communication costs by allowing multiple local updates at each step.
üEmpirical study: 1) VIMADMM converges faster and achieves higher

accuracy; 2) client-level explanation under VIM based on the linear heads.

RegularizationLocal embedding Server heads

dual variables constant penalty factor

• Augmented Lagrangian:

server

client

• Key steps of VIMADMM at each round 𝑡:
(1) Communication from client to server: a batch of local embeddings

(2) Sever updates auxiliary variables:

(3) Sever updates dual variables:

(4) Sever updates linear heads:

(5) Communication from server to each client: residual variable, dual
variables, and one corresponding linear head

(6) Client updates local model parameters:

v Decomposes the problem into
four sets of sub-problems over

v Alternatively updating in server
and clients

v Each sub-problem set can be
solved in parallel across 𝑀
clients or 𝑁 samples.

auxiliary variables

a consensus between the server’s output and auxiliary variable

