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Introduction
Vertical Federated Learning (VFL):

* Features of the samples are partitioned across clients and the labels are
owned by server
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Challenges:

* Aggregation: averaging local embeddings fails to capture the unique
properties of each client.

 Communication: communicating gradients for each training step incurs

high costs.

Our contributions:

v'Framework: an effective framework with multiple heads (VIM).

v'Algorithm: an ADMM-based method (VIMADMM) reducing
communication costs by allowing multiple local updates at each step.

v'Empirical study: 1) VIMADMM converges faster and achieves higher
accuracy; 2) client-level explanation under VIM based on the linear heads.

VFL with Multiple Heads (VIM)

VFL setting (with model splitting setting)
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Server aggregates local embeddings and computes gradient with labels {y;}}_;

Challenges: using averaged local embeddings as server model input [1]
might lose the unique aspects of each local feature set.

Our idea: server learns a model with multiple linear heads Wi, Ws,...,Wn
corresponding to local clients, taking their separate contribution into account
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Solving VIM with ADMM-based method

* Key idea: Multiple heads in VIM enable the alternating direction
method of multipliers (ADMM) via a special decomposition into simpler
sub-problems that can be solved in a distributed manner.

* Formulation: an equivalent constrained optimization problem
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e Solution: constant penalty factor
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VIMADMM Workflow

* Key steps of VIMADMM at each round t:
(1) Communication from client to server: a batch of local embeddings {“};es

(2) Sever updates auxiliary variables:
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(3) Sever updates dual variables:
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(4) Sever updates linear heads:
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(5) Communication from server to each client: residual variable, dual
variables, and one corresponding linear head *

S 250 S YWD v e B(t),Vk € [M]
i€[M],i#k
(6) Client updates local model parameter5°
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Solved by multiple local SGD steps.

* Comparing to SGCD-based VFL
methods [1,2] where server sends
gradients to clients at every training
step of the local models, VIMADMM

has lower communication costs.

** Reduce frequency by
allowing multiple local
updating steps at each round;

¢ Reduce dimensionality of
information by exchanging
ADMM-related variables.

Experiments

VIMADMM vs SOTA [1,2]
 VFL classification on four datasets: MNIST, CIFAR, NUS-WIDE and
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¢ Faster convergence; improved communication efficiency; higher accuracy.

Client-level Explainability of VIM

* The weights norm of linear heads under clean setting (row 2), under one noisy client (row
4), and test accuracy when each client’s test input features are perturbed (row 3).
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% The weights of linear heads reflect the importance of local clients;

% Perturbing the client with high weights has higher impact on test accuracy;
“* VIM enables client denoising by lowering their weights.

More details and results are in our paper:

* Details for algorithm VIMADMM-] for VFL without model splitting setting.

* Results on communication costs comparison, effect of penalty factor and local steps, client
summarization and the visualization of the local embedding.
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