

Differentially Private Synthetic Data via Foundation Model APIs 2: Text

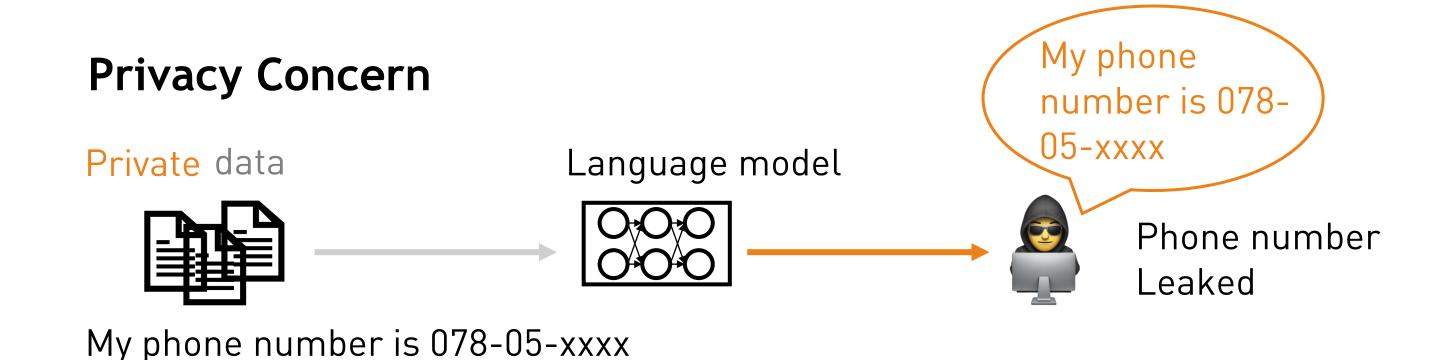
Chulin Xie¹, Zinan Lin², Arturs Backurs², Sivakanth Gopi², Da Yu³, Huseyin Inan², Harsha Nori², Haotian Jiang², Huishuai Zhang², Yin Tat Lee², Bo Li⁴, Sergey Yekhanin²

¹University of Illinois Urbana-Champaign ²Microsoft Research ³Sun Yat-sen University ⁴University of Chicago

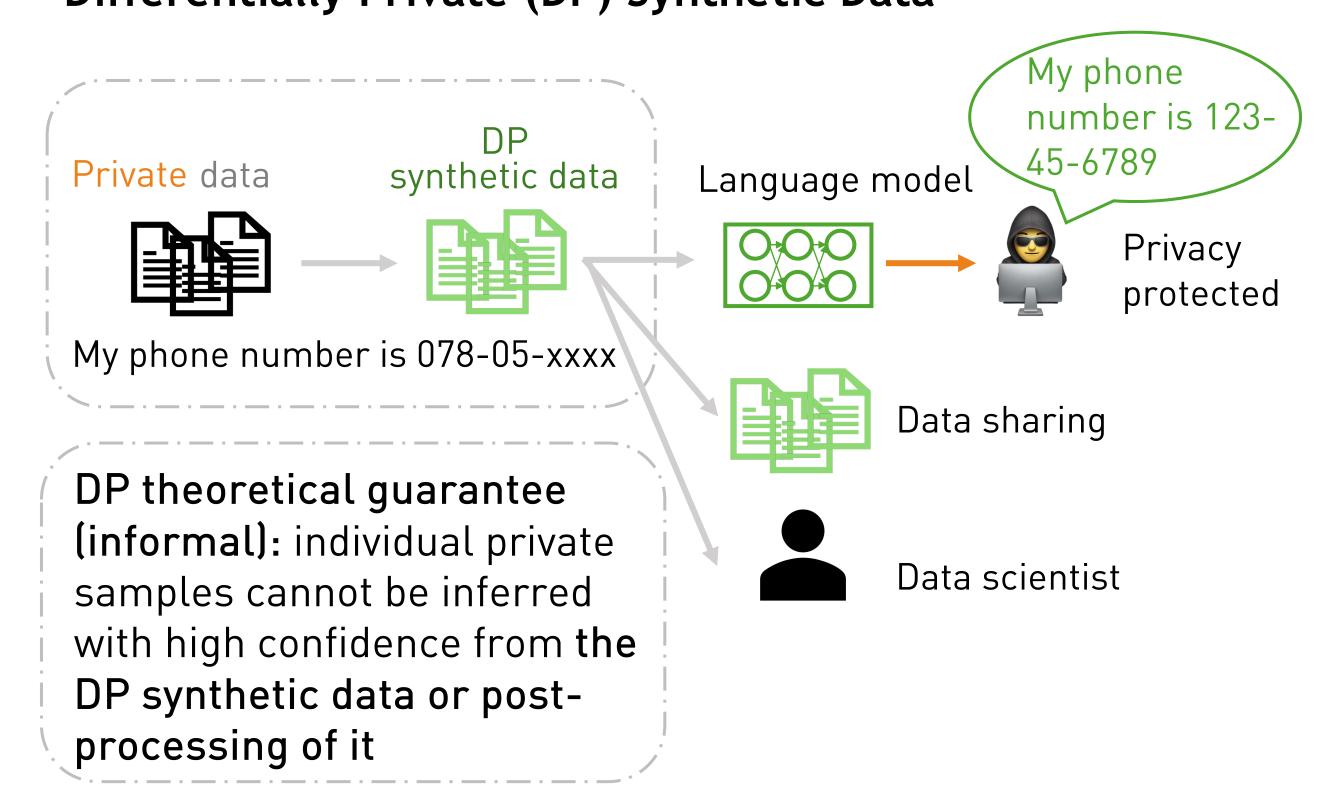
chulinx2@illinois.edu, {zinanlin,arturs.backurs,sivakanth.gopi,huseyin.inan,hanori,haotianjiang,huishuai.zhang,yintatlee,yekhanin}@microsoft.com, yuda3@mail2.sysu.edu.cn, bol@uchicago.edu

https://github.com/Al-secure/aug-pe

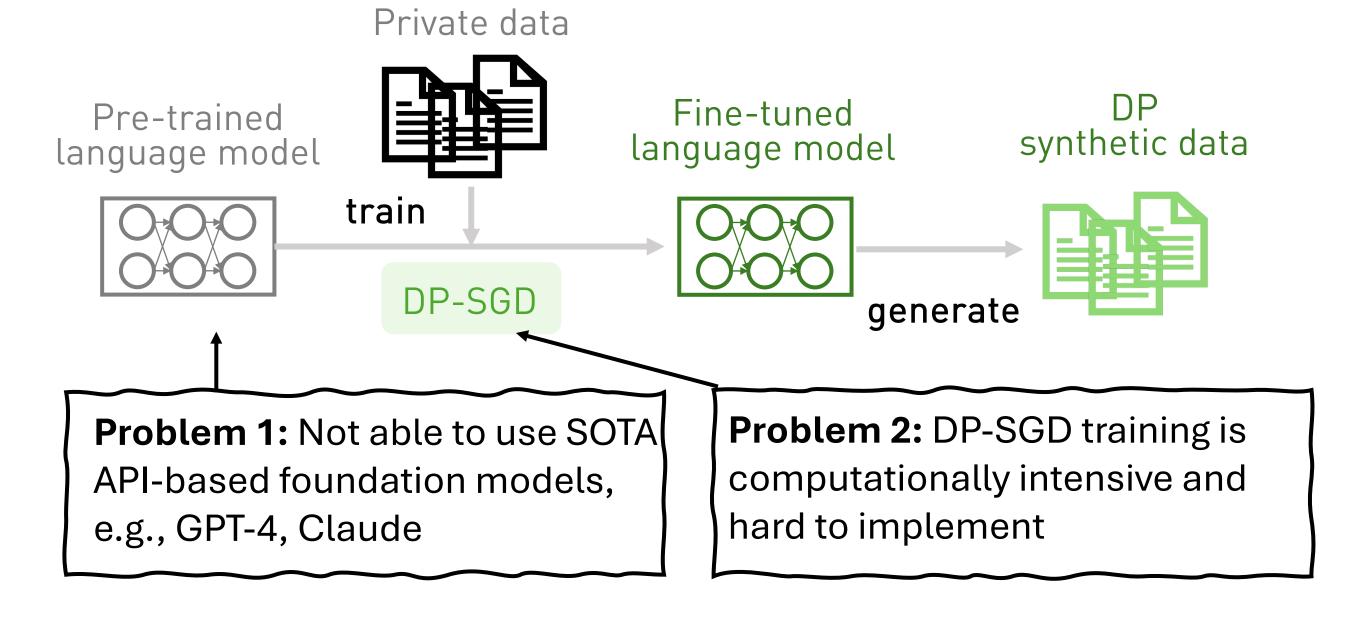
Introduction



Differentially Private (DP) Synthetic Data



SOTA Method: DP Finetune Generator



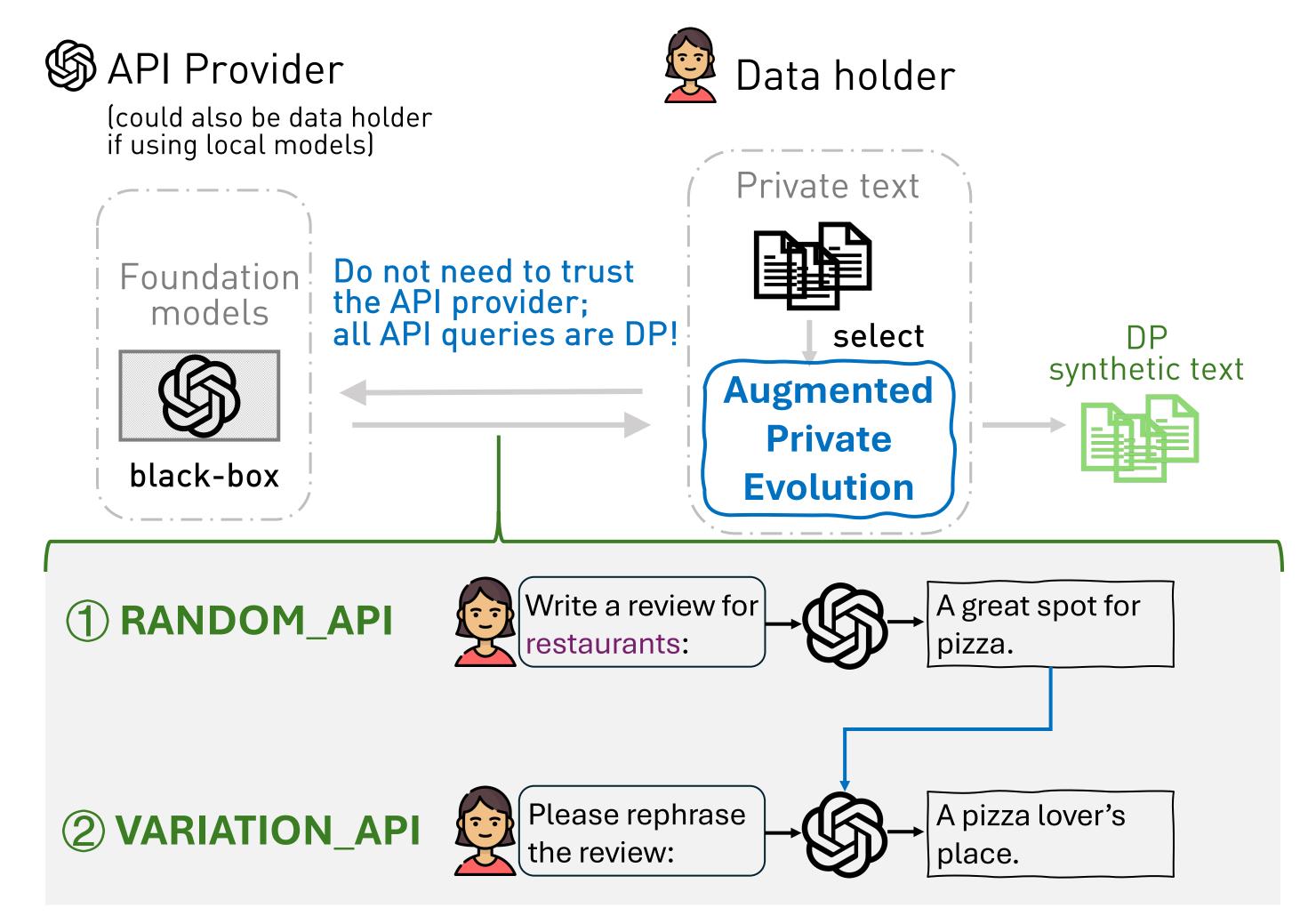
This Work: Augmented Private Evolution (Aug-PE)

- Only needs API access → Applicable to both API-based or opensourced foundation models
- Does not need any model training
- Could even outperform DP finetune generator in terms of privacyutility trade-off in some cases
- Extension of Private Evolution [ICLR 2024] from image to text, with new algorithmic techniques to increase the diversity and quality of text generation

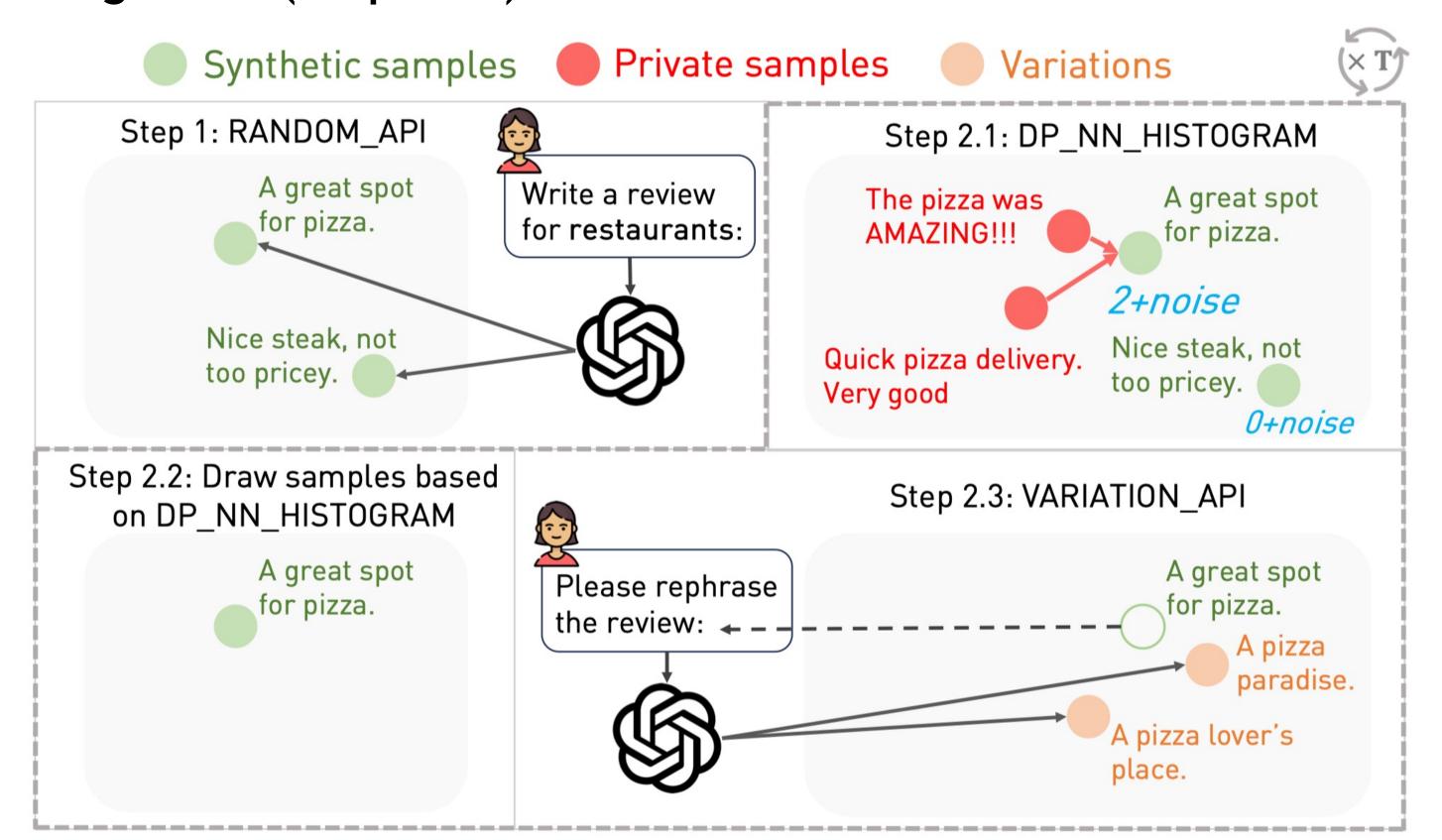
* [ICLR 2024] Differentially Private Synthetic Data via Foundation Model APIs 1: Image Zinan Lin, Sivakanth Gopi, Janardhan Kulkarni, Harsha Nori, Sergey Yekhanin

Augmented Private Evolution

Workflow:



Algorithm (simplified):

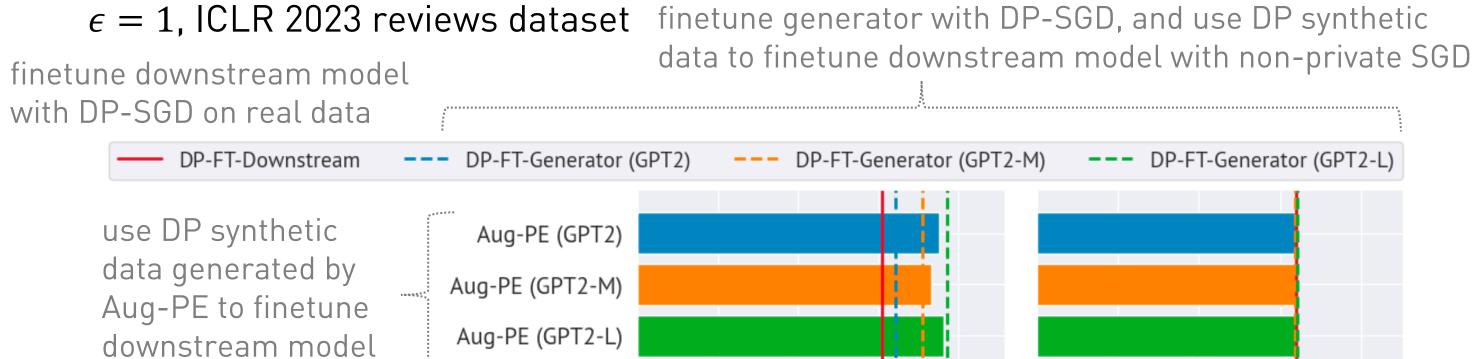


- Step 1 (RANDOM_API): prompt LLM to generate random samples.
- Step 2: go through steps 2.1-2.3 iteratively to refine the synthetic samples towards the private samples.
 - Step 2.1 (DP Nearest Neighbor Histogram): each private sample votes for their closest synthetic sample in the embedding space induced by embedding model. Then, add Gaussian noise to the votes to ensure DP.
 - Step 2.2: resample the generated texts according to the histogram.
 - Step 2.3 (VARIATION_API): prompt LLM to generate new similar samples, which will be used in the initial synthetic samples for the next iteration.

Experiments

with non-private SGD

Aug-PE matches/beats SOTA on text quality vs. privacy



Aug-PE is compatible with advanced LLMs for DP synthetic text generation (challenging/infeasible for DP finetuning)

		OpenReview				PubMed				
		$\epsilon = \infty$		$\epsilon = 1$		$\epsilon=\infty$		$\epsilon = 1$		
	LLM	Area	Rating	Area	Rating	BERT _{Mini}	BERT _{Small}	BERT _{Mini}	$BERT_{Small}$	
Hard to DP fine-tune due to computation requirement of DP-SGD	GPT-2	42.4	32.1	37.6	32.0	24.5	26.7	24.3	26.5	
	GPT-2-Medium	41.0	32.3	36.6	32.1	25.5	27.7	24.9	27.0	
	GPT-2-Large	42.1	32.1	38.1	32.0	25.7	27.9	25.1	27.2	
	Opt-6.7b	43.6	32.2	30.5	32.1	26.5	28.6	25.8	27.9	
	Vicuna-7b-v1.5	42.9	35.7	35.2	35.4	24.6	26.9	23.1	24.9	
	Falcon-7b-instruct	38.6	32.6	39.0	33.3	22.3	24.4	22.4	24.5	
	Llama-2-7b-chat-hf	45.5	38.5	36.4	37.0	25.8	28.4	24.8	27.5	
	Mixtral-8x7B-v0.1	45.9	41.8	43.6	42.3	24.9	27.6	24.5	27.1	
	GPT-3.5	45.4	43.5	41.9	43.1	30.4	32.7	30.1	32.4	

infeasible for DP finetuning as weights/ architectures are unavailable

Aug-PE uses private data to guide synthetic data selection

use GPT-3.5 as data generator

Setting	Yelp		OpenReview		PubMed	
	Rating	Category	Area	Rating	BERT _{Mini}	$BERT_{Small}$
Random API	62.3	73.7	34.4	42.0	29.7	31.9
Random API + Variation API	62.3	73.7	36.4	42.0	29.6	31.9
AUG-PE $(t=1)$	64.4	74.1	39.3	42.5	30.0	32.2
AUG-PE $(t = T)$	67.9	74.7	45.4	43.5	30.4	32.7

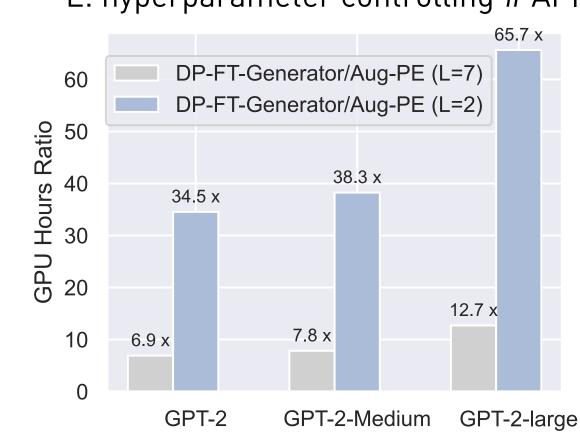
Aug-PE outperforms PE for text generation

- apply the same API designs and models to PE [ICLR 2024] to support text generation
- use GPT-2 as data generator
- the results show that new algorithmic techniques introduced in Aug-PE are effective

Method] .	Yelp		Review	PubMed	
Method	Rating	Category	Area	Rating	BERT _{Mini}	$BERT_{Small}$
$PE \leftarrow AUG-PE (k = 6, L = 1)$	44.9	71.8	35.3	32.0	20.1	22.3
AUG-PE ($k = 0, L = 7$)	67.5	74.8	42.4	32.1	24.5	26.7

Aug-PE can be computationally cheaper

L: hyperparameter controlling # API calls



Aug-PE can capture text length distribution

