PerAda: Parameter-Efficient Federated Learning Personalization with Generalization Guarantees

De-An Huang² Chaowei Xiao^{2,4} Bo Li^{1,5} Chulin Xie¹ Wenda Chu³ Anima Anandkumar³ Daguang Xu² ¹ University of Illinois Urbana-Champaign ² NVIDIA ³ Caltech ⁴ University of Wisconsin-Madison ⁵ University of Chicago https://github.com/NVlabs/PerAda

Background & Motivation

Personalized Federated Learning (FL)

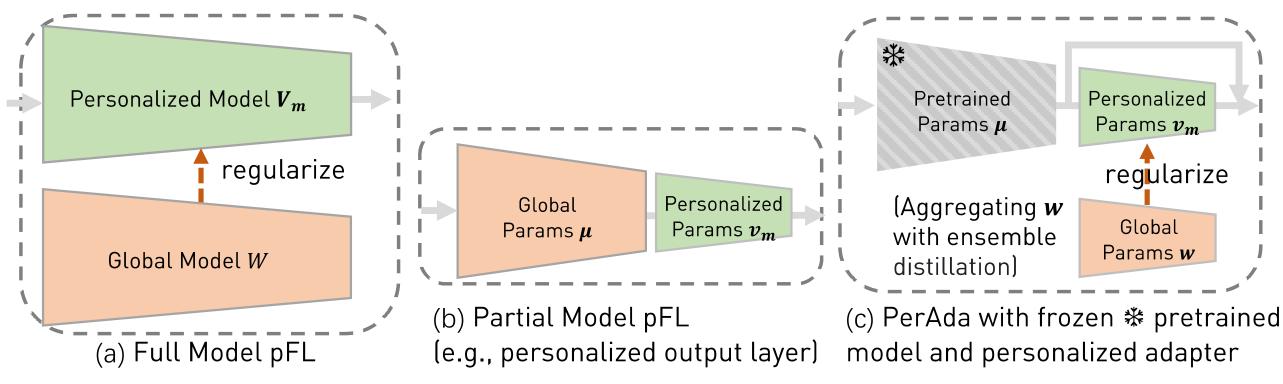
- Personalization: each client trains a personalized model on local data
- Generalization: clients leverage aggregated knowledge from other clients

Existing work

- Full model personalization: Each client trains a personalized model and a copy of global model aggregated by the server for regularization
- Partial model personalization:
- Split model into personalized and shared parameters
- Only shared parameters are aggregated

Challenge

- High communication and computational costs: Full model personalization doubles the memory at each client
- Limited generalization: Partial model personalization overfits to local data and struggles with distribution shifts
- shared parameters do not encode generalized knowledge well compared to full global model



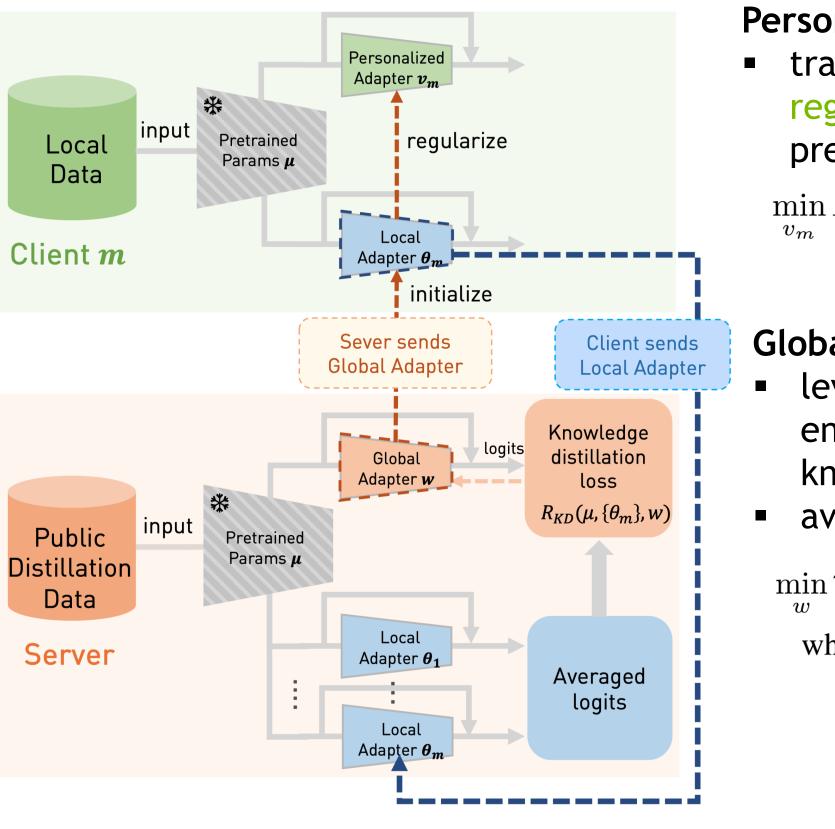
This Work: PerAda

Framework: parameter-efficient personalized FL using Adapters and Knowledge Distillation (KD)

Benefits:

- Reduce communication and computation costs with a pretrained model and adapters
- Achieve personalization while maintaining generalization to testtime distribution shifts with regularization and KD
- Theoretical justification of PerAda (in paper)
- Convergence analysis for global & personalized models
- o generalization guarantees for global & personalized models

Method



Experiments

Local-test: clients' corresponding local test data \rightarrow personalization Global-test: the union of clients' local test data \rightarrow generalization

Parameter-efficiency and averaged test

Algorithm	Personalized Params	# Trained Params	# Comm. Params	CIFAR-10				Office-Home		CheXpert	
				Local-test	Global-test	CIFAR-10.1	CIFAR-10-C	Local-test	Global-test	Local-test	Global-test
STANDALONE	Full model	11.18M	0 M	85.94 ± 8.82	29.77 ± 8.09	25.82± 6.27	$26.67 \pm \textbf{7.07}$	81.64± 6.08	$59.15{\scriptstyle \pm \ 3.32}$	65.06± 1.88	65.45± 2.3
MTL [57]	Full model	11.18 <i>M</i>	11.18 <i>M</i>	86.24 ± 8.45	29.46 ± 8.33	25.64 ± 6.42	$26.4 \pm \textbf{7.29}$	81.82 ± 5.53	59.25± 2.84	65.15± 1.95	65.48± 2.3
FEDAVG+FT [65]	Full model	11.18M	11.18M*	$88.91 {\scriptstyle \pm 5.71}$	$43.99 \pm$ 9.57	35.49 ± 8.02	36.51 ± 8.36	$79.42 \pm$ 5.62	<u>77.19</u> ± 0.56	70.16 ± 0.78	$70.6 ~\pm~ \scriptscriptstyle 0.31$
pFedMe [59]	Full model	22.36M	11.18M	$90.73 {\scriptstyle \pm~4.67}$	45.06 ± 8.65	$36.51 \pm $ 7.2	37.65 ± 7.6	$80.21 \pm$ 5.32	$75.69 \pm $ 0.69	$65.07 {\scriptstyle \pm 1.2}$	$64.86 {\scriptstyle \pm 1.22}$
APFL [10]	Full model	22.36M	11.18M	$90.74 \pm $ 4.75	$43.92 \pm$ 9.18	$35.83 {\scriptstyle \pm 7.5}$	$36.51 \pm \textbf{7.94}$	$81.24 {\scriptstyle \pm 4.51}$	$76.98 {\scriptstyle \pm 1.39}$	$68.98 {\scriptstyle \pm 1.04}$	$68.96{\scriptstyle \pm ~1.1}$
DITTO [33]	Full model	22.36M	11.18M	$90.21 {\scriptstyle \pm~4.61}$	<u>53.82</u> ± 6.35	$\underline{42.72}{\scriptstyle\pm}{\scriptstyle5.68}$	44.32 ± 5.73	$81.77 {\scriptstyle \pm~4.31}$	75.66 ± 1.01	$68.79{\scriptstyle \pm 1.4}$	$68.86 {\scriptstyle \pm 1.22}$
FEDBN [36]	Batch norm.	11.18M	11.17M	90.37± 5.19	43.18 ± 8.67	$35.01 \pm $ 7.24	$36.29 \pm \textbf{7.43}$	$81.86 {\scriptstyle \pm 5.13}$	74.26 ± 0.52	68.74 ± 1.17	$68.83 \pm$ 1.08
FEDALT [48]	Input layer	11.18M	6.45M	$87.07 \pm $ 6.54	$32.23\pm$ 8.23	$27.49 \pm \scriptstyle 6.41$	28.51 ± 7.11	$81.07 \pm$ 5.59	$65.85 \pm$ 0.9	$67.63 \scriptstyle \pm 1.18$	67.74 ± 1.1
FedSim [48]	Input layer	11.18M	6.45M	$87.93 \pm $ 6.25	33.07 ± 8.16	$28.21 \pm \scriptstyle 6.41$	$29.15 \pm \textbf{7.16}$	$82.45 \pm$ 5.03	$67.66 {\scriptstyle \pm 0.82}$	$67.49 {\scriptstyle \pm 1.32}$	$67.54{\scriptstyle \pm ~1.24}$
LG-FEDAVG [38]	Feat. extractor	11.18M	0.005M	86.7 ± 8.01	$29.96\pm$ s	25.97± 6.21	$26.83 \pm \scriptstyle 6.95$	$82.04 \pm$ 5.96	63.57± 2.32	$65.78 \pm$ 1.62	$66.23 {\scriptstyle \pm 1.75}$
FEDREP [9]	Output layer	11.18M	11.17M	87.76± 6.46	$35.19 \pm {}_{6.97}$	$30.15 \pm \scriptscriptstyle{5.89}$	$30.68 \pm \scriptstyle 6.31$	$79.05 \pm$ 5.88	74.17± 2.02	$66.66 {\scriptstyle \pm 1.82}$	66.52 ± 1.47
FEDALT [48]	Output layer	11.18M	11.17M	$89.68 \pm$ 5.4	$40.68 \pm$ 7.3	33.61 ± 6.12	34.3 \pm 6.5	83.24± 3.96	70.62 ± 1.46	$68.27 \pm$ 1.3	$68.36{\scriptstyle \pm 1.31}$
FedSim [48]	Output layer	11.18M	11.17M	$89.75 \pm $ 5.51	$41.98 \pm$ 7.66	$34.21\pm$ 6.22	35.31 ± 6.79	82.91 ± 4.46	$72.34 \pm $ 0.51	$68.22 {\scriptstyle \pm 1.34}$	$68.12 {\scriptstyle \pm 1.24}$
FEDALT [48]	Adapter	12.59M	11.18M	$87.26 \pm $ 7.78	31.51 ± 8.55	$27.38 \pm $ 6.65	$27.77 \pm $ 7.19	$81.41 \pm $ 6.5	57.88± 3.57	$72.13 {\scriptstyle \pm 1.34}$	$74.67 {\scriptstyle \pm 1.57}$
FedSim [48]	Adapter	12.59M	11.18M	87.76 ± 7.57	$31.97 {\scriptstyle \pm 7.44}$	$27.76 \pm $ 5.78	$28.1 \scriptstyle \scriptstyle 6.46$	82.14 ± 5.46	58.62 ± 3.24	$71.75 \pm$ 1.4	$74.09 \pm$ 1.55
PerAda w/o KD	Adapter	2.82M	1.41M	<u>91.27</u> ± 5.15	$53.81 \pm $ 6.27	$42.5 \pm \scriptscriptstyle{5.06}$	$\underline{44.45} \pm 5.48$	<u>83.31</u> ± 5.54	76.55 ± 2.47	<u>76.77</u> ± 2.24	<u>77.59</u> ± 2.18
PerAda	Adapter	2.82M	1.41M	$\overline{91.82}_{\pm 4.43}$	59.05 ± 5.24	47.25 _{± 4.48}	48.53 ± 4.74	83.58 ± 4.74	77.2 ± 1.63	76.98 ± 3.87	77.88 ± 1.55

- PerAda achieves the highest personalized performance and generalization by updating the smallest number of model parameters
- Existing partial model personalization methods have poor generalization to distribution shifts.
- Adapter-based personalization methods are generally effective on CheXpert.

Personalized objective:

 train personalized adapter with regularization towards a global adapter to prevent overfitting

 $\min P_m(v_m, w) := \mathcal{L}_m(u, v_m) + \frac{1}{2} \|v_m - w\|^2,$ (Personal Obj)

Global objective:

leverage server-side ensemble distillation to enrich the global adapter with ensemble knowledge from clients' local models avoid directly averaging clients' models

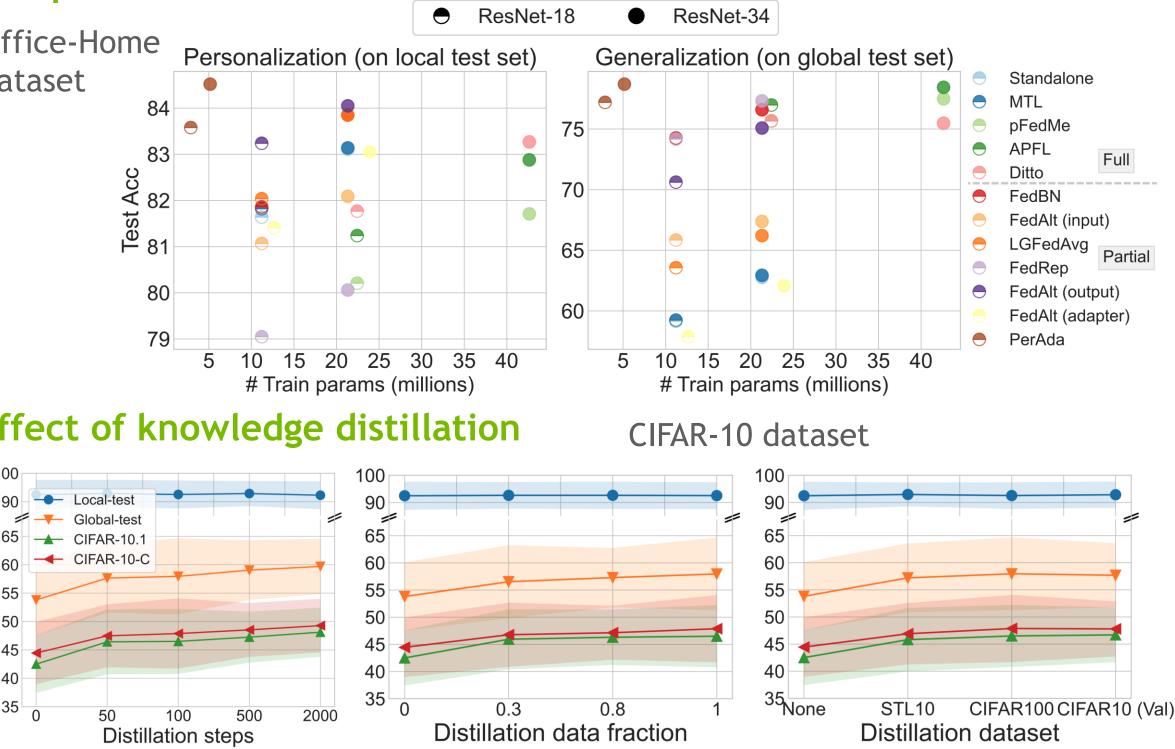
(Global Obj)

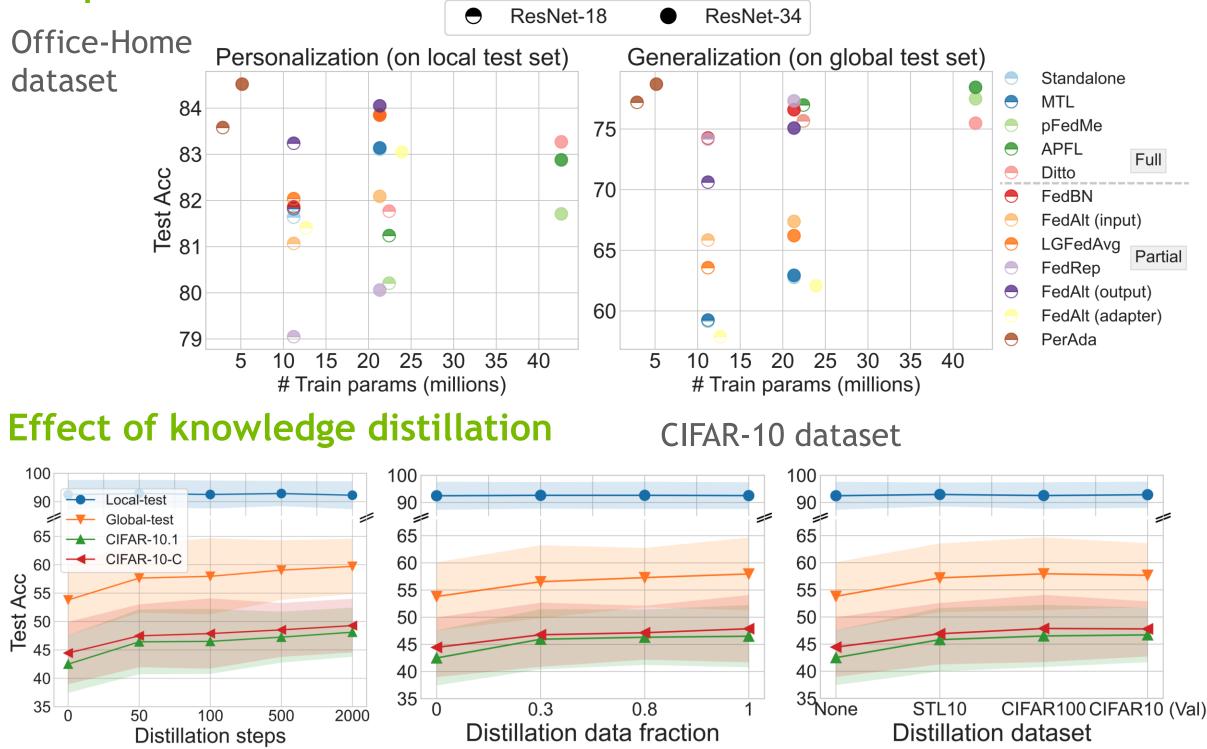
 $\min_{u} \mathcal{R}_{\mathsf{KD}}(u, \{\theta_m\}_{m=1}^M, w)$

where $\theta_m = \arg \min \mathcal{L}_m(u, \theta)$, initialized with w.

 \mathcal{R}_{KD} is average distillation loss (between the averaged logits of local models and logits of the global model) on an auxiliary (unlabeled) dataset

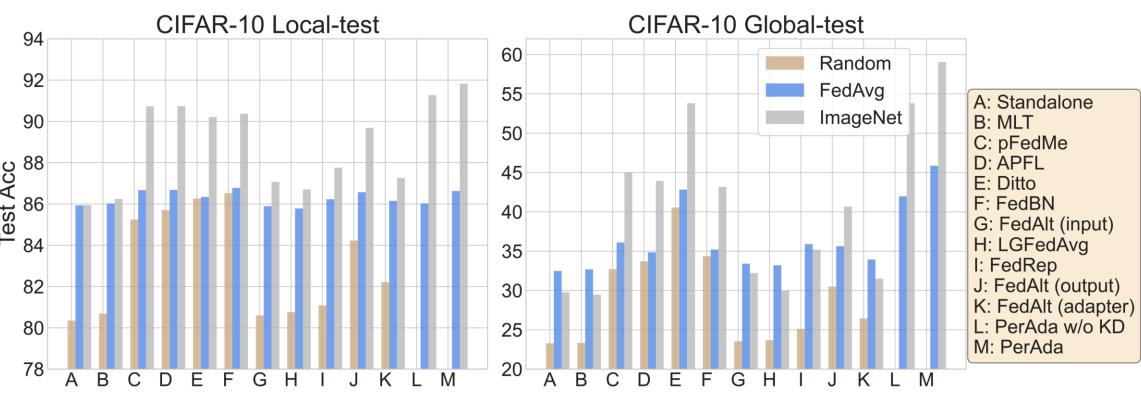
Comparison with SOTA





- More distillation steps & data help

• Out-of-domain distillation data achieve similar performance as in-domain data Effect of pretrained models



Utility under differential privacy (DP) guarantees

Algorithm	Personalization	$\epsilon = \infty$	$\epsilon = 5.99 \pm 3.03$	$\epsilon = 3.7 \pm 2.12$	$\epsilon = 1.81 \pm 1.12$
Ditto PerAda w/o KD PerAda	Full Adapter Adapter	98.59 ± 1.63 97.69 ± 1.79 98.08 ± 1.28	76.76 ± 24.14 77.49 ± 21.21 80.33 \pm 20.76	$\begin{array}{c} 76.75 \pm 24.13 \\ 77.32 \pm 21.16 \\ \textbf{79.79} \pm 20.45 \end{array}$	$76.67 \pm 24.12 \\76.68 \pm 21 \\\textbf{77.83} \pm 19.58$

ImageNet-pretraining leads to better performance than Fed-Avg pretraining

CIFAR-10 dataset with ViT-S/16-224 model

Perform local training with DP-SGD for personalized & global model PerAda achieves higher utility than full model personalization under DP