Chulin Xie

Contact: chulinx2@illinois.edu

xcl-2024-feb.jpg

Hi! I am a Ph.D. candidate in Computer Science at University of Illinois at Urbana-Champaign, advised by Prof. Bo Li.

I am broadly interested in trustworthy machine learning and optimization. I was a student researcher at Google Research, and research intern at Microsoft Research and NVIDIA Research.


News


Dec 31, 2024 Excited to be a recipient of the IBM PhD Fellowship.
Dec 3, 2024 Excited to co-organize workshop at ICLR 2025 on Will Synthetic Data Finally Solve the Data Access Problem?
Nov 16, 2024 Humbled to be selected as 2024 Rising Star in Machine Learning.
Aug 31, 2024 LLM-PBE named a Best Research Paper Finalist at VLDB 2024.
May 3, 2024 Our DP synthetic text work received Spotlight at ICML 2024.
Dec 12, 2023 Our LLM trustworthiness benchmark DecodingTrust won Outstanding Paper Award at NeurIPS.

Selected Work

(α) stands for alphabetical order and "*" stands for equal contribution. Please refer to Research for the full list.


  1. On Memorization of Large Language Models in Logical Reasoning
    Chulin Xie, Yangsibo Huang, Chiyuan Zhang, Da Yu, Xinyun Chen, Bill Yuchen Lin, Bo Li, Badih Ghazi, and Ravi Kumar
    Preprint 2024
  2. (α) Crosslingual Capabilities and Knowledge Barriers in Multilingual Large Language Models
    Lynn Chua, Badih Ghazi, Yangsibo Huang, Pritish Kamath, Ravi Kumar, Pasin Manurangsi, Amer Sinha, Chulin Xie, and Chiyuan Zhang
    Preprint 2024
  3. RedCode: Risky Code Execution and Generation Benchmark for Code Agents
    Chengquan Guo*, Xun Liu*, Chulin Xie*, Andy Zhou, Yi Zeng, Zinan Lin, Dawn Song, and Bo Li
    NeurIPS 2024
  4. Differentially Private Synthetic Data via Foundation Model APIs 2: Text
    Chulin Xie, Zinan Lin, Arturs Backurs, Sivakanth Gopi, Da Yu, Huseyin A Inan, Harsha Nori, Haotian Jiang, Huishuai Zhang, Yin Tat Lee, Bo Li, and Sergey Yekhanin
    ICML 2024 (Spotlight)
  5. Decoding Compressed Trust: Scrutinizing the Trustworthiness of Efficient LLMs Under Compression
    Junyuan Hong, Jinhao Duan, Chenhui Zhang, Zhangheng Li, Chulin Xie, Kelsey Lieberman, James Diffenderfer, Brian Bartoldson, Ajay Jaiswal, Kaidi Xu, Bhavya Kailkhura, Dan Hendrycks, Dawn Song, Zhangyang Wang, and Bo Li
    ICML 2024
  6. LLM-PBE: Assessing Data Privacy in Large Language Models
    Qinbin Li*, Junyuan Hong*, Chulin Xie*, Jeffrey Tan, Rachel Xin, Junyi Hou, Xavier Yin, Zhun Wang, Dan Hendrycks, Zhangyang Wang, Bo Li, Bingsheng He, and Dawn Song
    VLDB 2024 (Best Research Paper Finalist)
  7. PerAda: Parameter-Efficient Federated Learning Personalization with Generalization Guarantees
    Chulin Xie, De-An Huang, Wenda Chu, Daguang Xu, Chaowei Xiao, Bo Li, and Anima Anandkumar
    CVPR 2024
  8. Improving Privacy-Preserving Vertical Federated Learning by Efficient Communication with ADMM
    Chulin Xie, Pin-Yu Chen, Qinbin Li, Arash Nourian, Ce Zhang, and Bo Li
    SaTML 2024
  9. Ring-A-Bell! How Reliable are Concept Removal Methods for Diffusion Models?
    Yu-Lin Tsai, Chia-Yi Hsu, Chulin Xie, Chih-Hsun Lin, Jia-You Chen, Bo Li, Pin-Yu Chen, Chia-Mu Yu, and Chun-Ying Huang
    ICLR 2024
  10. DecodingTrust: A Comprehensive Assessment of Trustworthiness in GPT Models
    Boxin Wang*, Weixin Chen*, Hengzhi Pei*, Chulin Xie*, Mintong Kang*, Chenhui Zhang*, Chejian Xu, Zidi Xiong, Ritik Dutta, Rylan Schaeffer, Sang T. Truong, Simran Arora, Mantas Mazeika, Dan Hendrycks, Zinan Lin, Yu Cheng, Sanmi Koyejo, Dawn Song, and Bo Li
    NeurIPS 2023 (Oral) Outstanding Paper Award
  11. Unraveling the Connections between Privacy and Certified Robustness in Federated Learning Against Poisoning Attacks
    Chulin Xie, Yunhui Long, Pin-Yu Chen, Qinbin Li, Sanmi Koyejo, and Bo Li
    ACM CCS 2023
  12. CRFL: Certifiably Robust Federated Learning against Backdoor Attacks
    Chulin Xie, Minghao Chen, Pin-Yu Chen, and Bo Li
    ICML 2021 (Spotlight)

Teaching


  • Teaching Assistant for CS 446: Machine Learning, Fall 2023