Research

2024

  1. Differentially Private Synthetic Data via Foundation Model APIs 2: Text
    Chulin Xie, Zinan Lin, Arturs Backurs, Sivakanth Gopi, Da Yu, Huseyin A Inan, Harsha Nori, Haotian Jiang, Huishuai Zhang, Yin Tat Lee, Bo Li, and Sergey Yekhanin
    ICML 2024 (Spotlight)
  2. LLM-PBE: Assessing Data Privacy in Large Language Models
    Qinbin Li*, Junyuan Hong*, Chulin Xie*, Jeffrey Tan, Rachel Xin, Junyi Hou, Xavier Yin, Zhun Wang, Dan Hendrycks, Zhangyang Wang, Bo Li, Bingsheng He, and Dawn Song
    VLDB 2024 (Best Paper Nomination)
  3. Decoding Compressed Trust: Scrutinizing the Trustworthiness of Efficient LLMs Under Compression
    Junyuan Hong, Jinhao Duan, Chenhui Zhang, Zhangheng Li, Chulin Xie, Kelsey Lieberman, James Diffenderfer, Brian Bartoldson, Ajay Jaiswal, Kaidi Xu, Bhavya Kailkhura, Dan Hendrycks, Dawn Song, Zhangyang Wang, and Bo Li
    ICML 2024
  4. Graph Chain-of-Thought: Augmenting Large Language Models by Reasoning on Graphs
    Bowen Jin, Chulin Xie, Jiawei Zhang, Kashob Kumar Roy, Yu Zhang, Suhang Wang, Yu Meng, and Jiawei Han
    ACL Findings 2024
  5. PerAda: Parameter-Efficient Federated Learning Personalization with Generalization Guarantees
    Chulin Xie, De-An Huang, Wenda Chu, Daguang Xu, Chaowei Xiao, Bo Li, and Anima Anandkumar
    CVPR 2024
  6. FedSelect: Personalized Federated Learning with Customized Selection of Parameters for Fine-Tuning
    Rishub Tamirisa, Chulin Xie, Wenxuan Bao, Andy Zhou, Ron Arel, and Aviv Shamsian
    CVPR 2024
  7. Improving Privacy-Preserving Vertical Federated Learning by Efficient Communication with ADMM
    Chulin Xie, Pin-Yu Chen, Qinbin Li, Arash Nourian, Ce Zhang, and Bo Li
    SaTML 2024
  8. Ring-A-Bell! How Reliable are Concept Removal Methods for Diffusion Models?
    Yu-Lin Tsai, Chia-Yi Hsu, Chulin Xie, Chih-Hsun Lin, Jia-You Chen, Bo Li, Pin-Yu Chen, Chia-Mu Yu, and Chun-Ying Huang
    ICLR 2024
  9. Effective and Efficient Federated Tree Learning on Hybrid Data
    Qinbin Li, Chulin Xie, Xiaojun Xu, Xiaoyuan Liu, Ce Zhang, Bo Li, Bingsheng He, and Dawn Song
    ICLR 2024

2023

  1. DecodingTrust: A Comprehensive Assessment of Trustworthiness in GPT Models
    Boxin Wang*, Weixin Chen*, Hengzhi Pei*, Chulin Xie*, Mintong Kang*, Chenhui Zhang*, Chejian Xu, Zidi Xiong, Ritik Dutta, Rylan Schaeffer, Sang T. Truong, Simran Arora, Mantas Mazeika, Dan Hendrycks, Zinan Lin, Yu Cheng, Sanmi Koyejo, Dawn Song, and Bo Li
    NeurIPS Datasets & Benchmarks 2023 (Oral) Outstanding Paper Award
  2. Unraveling the Connections between Privacy and Certified Robustness in Federated Learning Against Poisoning Attacks
    Chulin Xie, Yunhui Long, Pin-Yu Chen, Qinbin Li, Sanmi Koyejo, and Bo Li
    ACM CCS 2023
  3. FOCUS: Fairness via Agent-Awareness for Federated Learning on Heterogeneous Data
    Wenda Chu*, Chulin Xie*, Boxin Wang, Linyi Li, Lang Yin, Han Zhao, and Bo Li
    Federated Learning Workshop at NeurIPS 2023 (Oral)

2022

  1. CoPur: Certifiably Robust Collaborative Inference via Feature Purification
    Jing Liu, Chulin Xie, Sanmi Koyejo, and Bo Li
    NeurIPS 2022
  2. Dataset Security for Machine Learning: Data Poisoning, Backdoor Attacks, and Defenses
    Micah Goldblum, Dimitris Tsipras, Chulin Xie, Xinyun Chen, Avi Schwarzschild, Dawn Song, Aleksander Madry, Bo Li, and Tom Goldstein
    TPAMI 2022

2021

  1. CRFL: Certifiably Robust Federated Learning against Backdoor Attacks
    Chulin Xie, Minghao Chen, Pin-Yu Chen, and Bo Li
    ICML 2021 (Spotlight)
  2. Style-based Point Generator with Adversarial Rendering for Point Cloud Completion
    Chulin Xie*, Chuxin Wang*, Bo Zhang, Hao Yang, Dong Chen, and Fang Wen
    CVPR 2021

2020

  1. DBA: Distributed Backdoor Attacks against Federated Learning
    Chulin Xie, Keli Huang, Pin-Yu Chen, and Bo Li
    ICLR 2020